MONOCLONAL ANTIBODY DATASHEET

Clones NSE-P1 & NSE-P2 against human neuron-specific enolase (γ-enolase isozyme)

Specificity: γ -isozyme of human enolase

(NSE)

Description: monoclonal antibodies specific for the γ subunit of human enolase (neuron-specific enolase, NSE)

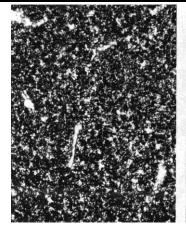
sotype: both IgG1κ

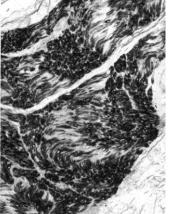
Clones: NSE-P1 and NSE-P2

Purification: unpurified; supplied as

hybridoma supernatants **Fusion Partner:** Ag 8563

B Cell Donor: BALB-c mouse


Cross-reactivity: not reactive with -isozyme


of enolase

Immunogen: ovalbumin-conjugated synthetic peptides corresponding to human NSE amino

acid sequence:

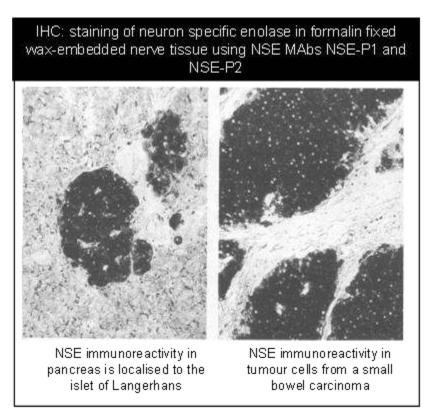
NSE-P1: aa's 416-433 -LGDEARFAGHNFRNPSVL NSE-P2: aa's 271-285 -TGDQLGALYQDFVRD IHC: staining of neuron specific enolase in formalin fixed wax-embedded nerve tissue using NSE MAbs NSE-P1 and NSE-P2

NSE immunoreactivity in cerebral cortex neurons

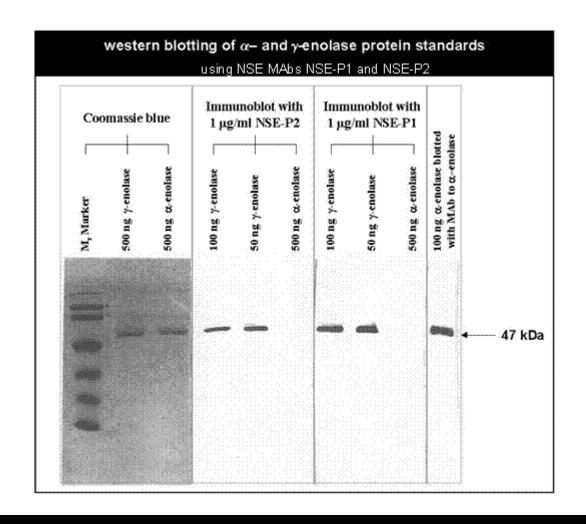
NSE immunoreactivity in peripheral nerve fibres

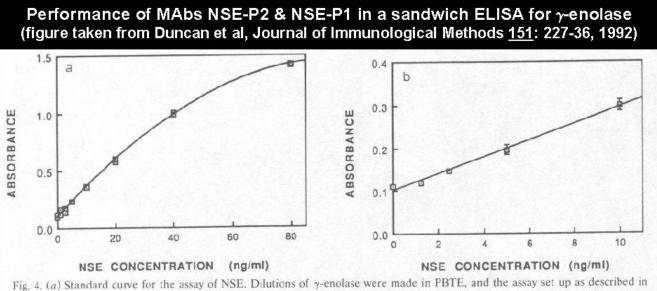
Positive Control: IHC: formalin-fixed, paraffin-embedded nerve tissue sections

western blot: γ-isozyme of human enolase; 50-100 ng per lane


Clinical significance: neuron specific enolase (NSE, or γ -isozyme of enolase) is found at elevated concentrations in plasma in certain neoplasias, including paediatric neuroblastoma (Lancet i (1982) 583-585)

and small cell lung cancer (Lancet ii, (1983) 361-363)


Applications		Recommended Usage Conditions
ELISA	✓	see Duncan et al, J Immunol Methods 151: 227-3, 1992
Western Blot	✓	undiluted
IHC	✓	see Murray et al, J Clin Path 46 : 993-6, 1993


Human tissues examined using NSE-P1 & NSE-P2	Results observed	Ref. no.
Serum	NSE detectable by ELISA	1
Brain tissue: nerve cells, axons and processes	IHC +ve	2
Brain tissue: glial cells and blood vessels	IHC -ve	2
Brain tissue: ganglion cells and peripheral nerve fibres	IHC +ve	2
Brain tissue: adrenal medulla	IHC +ve	2
Pancreas: islets of Langerhans	IHC +ve	2
Pancreas: acini or ducts of the exocrine pancreas	IHC -ve	2

Adrenal medulla	+ve (chromaffin cells)	2
Adrenal cortex	-ve	2
Skeletal muscle	IHC -ve	2
Liver tissue	IHC -ve	2
Endocrine tumours (pancreas, adrenals, small bowel)	+ve in tumour cells	2

References	1	Duncan, ME, McAleese SM, Booth NA, Melvin WT & Fothergill JE (1992) A simple enzyme-linked immunosorbent assay (ELISA) for the neuron-specific γ isozyme of human enolase (NSE) using monoclonal antibodies raised against synthetic peptides corresponding to isozyme sequence differences. <i>J. Immunological Methods</i> 151 : 227-236.
	2	Murray GI, Duncan ME, Melvin WT & Fothergill JE (1993) Immunohistochemistry of neurone specific enolase with γ subunit specific antipeptide monoclonal antibodies. <i>J. Clin Pathol</i> 46 : 993-996.

